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For this animation the pa-
rameters are: 
 
radius of the circle: r = 5 
Particle speed:  v = 4 
collision proximity: δ = 0.02 
frame freq: 25 frames/s 
initial pop  N = 50 
 

This is a very interesting 
problem.  It’s a great ex-
ample for a grade 11 stu-
dent in the process of un-
derstanding exponential 
growth (because it isn’t 
exponential growth!)  And 
then, later on, it’s a fine 
problem for a university 
calculus student to solve. 

“The exception proves the 
rule.” To fully understand 
a rule it is important to 
meet cases where it 
doesn’t apply. 

The collision model 
Start by viewing the animation. Roughly speaking, when two particles 
“collide” they produce an offspring particle, which we signal with a red 
flash. The offspring goes off in a random direction and becomes a new 
adult.   
 

 
 
The question is: is this exponential growth?  That is, does the population 
grow at a rate proportional to its size N? That’s what we had in the light-
ning model. Is that the case here? 
 
When we show this to a grade 11 class and ask if it is exponential growth 
they talk about it warily for a while but ultimately vote YES (but with 
many abstentions).  Well it grows the way most biological populations 
grow, so doesn’t that make it exponential?   
 
When I ask someone to “convince me” I get an explanation like this: if I 
am a random individual, the probability that I will have a collision in any 
small unit of time is proportional to the number of individuals (or maybe 
to the number of other individuals) in the population so doesn’t that 
mean growth rate proportional to size?   So it’s exponential? 
 
All true!  Very good!  But that’s individual growth––growth rate per indi-
vidual.  Since there are N individuals, population growth rate will be N 
times this. So population growth rate is really proportional to something 
like 𝑁𝑁2.  And that’s not exponential. 
 
To proceed with the analysis we need a more detailed description of the 
process that generates the curve. First of all, as always, particles are 
moving points.  But they are not moving continuously. What we are 
viewing is “stop-action animation.” You see a new screen every 1/25th of 
a second.  At each screen, every particle has a position and a direction of 
movement.  First we look at all the positions and take note of all the 
cases in which a pair of particles are less than δ = 0.02 apart.  For every 
such case we create a new particle with a new random direction and 
show a red flash. Then secondly, we move every particle, following its 
direction of movement the distance it is supposed to move in 1/25th of a 
second. Since particle speed is 4 cm/s, that’s a distance of 0.16 cm. That 
gives us the next screen. 
 
  

https://www.youtube.com/watch?v=R-WQCxTO4-8
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That division by 2 requires 
careful thinking, but it 
happens a lot in this kind 
of argument.  In working 
this problem with different 
groups of students, I have 
been surprised (and 
pleased) by how often this 
issue is raised by the stu-
dents in the course of their 
analysis. 

Take note that this re-
cursive equation up-
dates N every 1/25th of 
a second.  Thus, fol-
lowing this equation, 
the population size af-
ter one second would 
be 𝑁𝑁25, after two sec-
onds 𝑁𝑁50, etc.  

The dynamic equation. 
We will follow the same kind of analysis we used for the lightning model. 
Consider a focal (red) particle. At any frame (screen), what will be the 
expected number ε of “collisions” that it is involved in? A collision will 
happen if a random (blue) particle finds itself inside a circle of radius 
0.02 about the focal particle.  Now there are N–1 other (blue) particles, 
all independent of one another so the expected number of these that are 
inside that circle will be  

𝜀𝜀 = (𝑁𝑁 − 1)
𝜋𝜋𝛿𝛿2

𝜋𝜋𝑟𝑟2
= (𝑁𝑁 − 1)

𝜋𝜋(0.02)2

𝜋𝜋(5)2 = (𝑁𝑁 − 1)
0.0004

25
=
𝑁𝑁 − 1
62500

 

This applies for every (red) particle in the population and there are N of 
these. Then the change in population size is 

∆𝑁𝑁 =
𝜀𝜀𝜀𝜀
2

=
𝑁𝑁
2
�
𝑁𝑁 − 1
62500

� =
𝑁𝑁(𝑁𝑁 − 1)
125000

 

Note the 2 in the denominator. That’s because we are double counting. 
That collision will get counted as a reproduction for both the red and the 
blue particle but only the one offspring will result. 
 
Note: be careful with the units of time.  ∆𝑁𝑁 is the expected change in 
population size every time we make a count of the collisions and that’s 
every 1/25th of a second.  
 
Is this exponential growth?––certainly not.  Population growth over each 
time step is not proportional to N. It’s proportional to N(N–1). 
 
This might well be as far as we want to go with grade 11 students.  But I 
will carry on with further analysis that might be of interest to some stu-
dents in grade 11 or grade 12, and is squarely in the curriculum of a first-
year calculus student in university.  
 
An equation for N 
Can we use this equation to get a formula for N at any time?  Let’s 
start by being careful about the units of time.  The unit of time for 
the change in size above is 1/25th of a second. I’m going to use the 
variable τ (“tau” is the Greek letter for t) for time measured in 
1/25th of a second. Then I can reserve t for time in seconds.   
 

To write the ∆𝑁𝑁 equation more explicitly, I will use 𝑁𝑁𝜏𝜏 for the popu-
lation size at any time τ (in 1/25th seconds).  Then the growth equa-
tion 

∆𝑁𝑁 =
𝑁𝑁(𝑁𝑁 − 1)
125000

  

can be written as a recursive equation: 

𝑁𝑁𝜏𝜏+1 = 𝑁𝑁𝜏𝜏 +
𝑁𝑁𝜏𝜏(𝑁𝑁𝜏𝜏 − 1)

125000
            𝑁𝑁0 = 50 

By adding the initial condition, I get a formulation that completely 
specifies the population size at any time τ (τ a positive integer).  
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Time 
t 

Size 
N 

0 50 
5 52.6 

10 55.4 
15 58.6 
20 62.2 
25 66.3 
30 70.9 
35 76.2 
40 82.4 
45 89.8 
50 98.5 
55 109.1 
60 122.3 
65 139.2 
70 161.5 
75 192.3 
80 237.7 
85 311.3 
90 450.9 

 

There are different kinds of data 
in this section. The data in the ta-
ble above, and plotted at the left, 
are from our discrete-time theo-
retical model.  

𝑁𝑁𝜏𝜏+1 = 𝑁𝑁𝜏𝜏 +
𝑁𝑁𝜏𝜏(𝑁𝑁𝜏𝜏 − 1)

125000
 

Can we “solve” this equation?  That is, can we find a formula for 
N at any time τ? In fact the answer is no––it can’t be solved. It 
turns out that recursive equations can almost never be solved. 
In sections 10 and 11 in which we look at interest rates and 
annuities, the recursive equations that arise are linear and 
these can be solved.  But otherwise only exceptional cases can 
be handled. This one is quadratic and there is no general analy-
sis available.  However, even though they can’t be solved ana-
lytically, quadratic recursive equation can be numerically 
tracked to give us beautiful images such as the Mandelbrot set 
and its many variations. 
 
What can we do? Well we can certainly track the change in size 
numerically, with a program or a spreadsheet. That’s an 
important procedure and I want every student to get the 
chance to do it.  
 
I used Excel to track the population size for 200 seconds.  That 
required 25×200 = 5000 iterations and the results are tabu-
lated at the right and plotted below. Note that the time scale 
measures time in seconds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
That might look at first glance like an exponential curve, but it 
is not.  Ask the class if they can suggest a simple “eyeball” check 
to show that it isn’t exponential.   
 
Here’s one.––look at the doubling time. It takes 50 seconds to 
go from 50 to 100. Another 25 seconds brings it to 200.  And 
less than 15 more seconds gives us 400.  The doubling time is 
certainly not constant.  In fact each doubling step seems to take 
about half as long as the previous step.  
 
  

http://usefuljs.net/fractals/docs/mandelvariants.html
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Now we are in the domain 
of first-year university cal-
culus.  But nevertheless, 
some grade 11 students 
would be interested to see 
this.   

Whenthe time interval is 
short, an equation for dis-
crete growth can be ap-
proximated by an equation 
for continuous growth, 
that is by a differential 
equation. And the power of 
calculus allows us to solve 
a large variety of differen-
tial equations.  

The data in the red curve 
below are plotted from our 
continuous-time theoreti-
cal model.  This is an ap-
proximation of the dis-
crete-time model above. 

Using a continuous approximation.  
One interesting thing we can do is change from discrete time to continu-
ous time and replace what is essentially a difference equation with a dif-
ferential equation.  

d𝑁𝑁
d𝜏𝜏

=
𝑁𝑁(𝑁𝑁 − 1)
125000

 

Can we solve this equation? 
 
Yes we can. In fact because it has a special form called “separable,” all we 
need is integration. 
 

Put the N’s on one side and τ on the other.  
d𝑁𝑁

𝑁𝑁(𝑁𝑁 − 1)
=

d𝜏𝜏
125000

 

Now we integrate both sides. First we rewrite the LHS: 

�
1

𝑁𝑁 − 1
−

1
𝑁𝑁
� d𝑁𝑁 =

d𝜏𝜏
125000

 

ln(𝑁𝑁 − 1) − ln(𝑁𝑁) =
𝜏𝜏

125000
+ 𝑐𝑐 

ln �
𝑁𝑁 − 1
𝑁𝑁

� =
𝜏𝜏

125000
+ 𝑐𝑐 

Exponentiate 
𝑁𝑁 − 1
𝑁𝑁

= 𝑒𝑒𝑐𝑐 ∙ 𝑒𝑒
𝜏𝜏

125000 = 𝑘𝑘𝑒𝑒
𝜏𝜏

125000 

Put in the initial condition τ = 0, N = 50: 
49
50

= 𝑘𝑘 

𝑁𝑁 − 1
𝑁𝑁

=
49
50

𝑒𝑒
𝜏𝜏

125000 

Solve for N 

50(𝑁𝑁 − 1) = 49𝑁𝑁𝑒𝑒
𝜏𝜏

125000 

�50 − 49𝑒𝑒
𝜏𝜏

125000�𝑁𝑁 = 50 

𝑁𝑁 =
50

50 − 49𝑒𝑒
𝜏𝜏

125000
=

1

1 − 0.98𝑒𝑒
𝜏𝜏

125000
 

Switch to time t in seconds: τ = 25t  

𝑁𝑁 =
1

1 − 0.98𝑒𝑒
25𝑡𝑡

125000
=

1

1 − 0.98𝑒𝑒�
𝑡𝑡

5000�
 

The graph is plotted at the right.  
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Here we have the data from the two models, 
discrete and continuous, plotted on the same 
set of axes.  Finally below, the ragged blue 
curve is empirical data from a run of the ani-
mation. 

 
 
Around t = 70, the curve starts to grow very fast.  
In fact it has a vertical asymptote when  

0.98𝑒𝑒�
𝑡𝑡

5000� = 1 

𝑡𝑡 ≈ 101 
 

Finally we put the two graphs, discrete 

𝑁𝑁𝜏𝜏+1 = 𝑁𝑁𝜏𝜏 +
𝑁𝑁𝜏𝜏(𝑁𝑁𝜏𝜏 − 1)

125000
 

and continuous 

𝑁𝑁 =
1

1 − 0.98𝑒𝑒
𝜏𝜏

125000
 

together on the same set of axes. [But note that 
the time axis is t whereas the formulae use τ.]  

The fit is surprisingly good.  But there’s one in-
teresting surprise.  As I said above, the red 
curve is headed for a vertical asymptote at t = 
101. But the blue dots most certainly are not, 
that is, τ can march on forever. [Take a minute 
to think about this.  It’s an interesting distinc-
tion, and one that is of mathematical interest.] 

 

 

 

 

 

Finally the graph at the bottom plots the theo-
retical curve (red) on top of data (blue) taken 
from a run of the animation. In fact if we run the 
animation, we will get a wide variety of curves 
some differing greatly from the one shown.  
Some runs get past 400 before t = 70, while oth-
ers have grown only to N = 200 at t = 90.  

For the graph below, we simply chose a run that 
gave a good fit to the theoretical model.  It was 
not hard to find such a run. 

  




