Proofs and Proving

Determine whether each of the following are valid proofs of the statements given. Be specific. Where appropriate, formulate correct proofs.

1. Statement: Let m be an integer. If m^{2} is even, then m is even.

Proposed "Proof": Assume m is even. Then $m=2 k$ for some integer k. Thus, $m^{2}=(2 k)^{2}$, or $m^{2}=2\left(2 k^{2}\right)$, which is even. Therefore, if m^{2} is even, then m is even.
2. Statement: Let m be an integer. If m is even, then m^{2} is even.

Proposed "Proof": Suppose m is not even. Then m is odd. So $m=2 k+1$ for some integer k. Therefore, $m^{2}=(2 k+1)^{2}=\left(4 k^{2}+4 k+1\right)$ which is odd. Thus, if m is odd, then m^{2} is odd. Therefore, if m is even, then m^{2} is even.
3. Statement: Let x and y be real numbers. If $x y=0$, then $x=0$ and $y=0$.

Proposed "Proof": There are two cases.
Case 1: If $x=0$, then $x y=0 \cdot y=0$.
Case 2: If $y=0$, then $x y=x \cdot 0=0$.
In either case, $x y=0$.
4. Statement: Let m be an integer. If m^{2} is even, then m is even.

Proposed "Proof": Assume m is not even. Then m is odd. Thus, $m=2 k+1$ for some integer k. Then $m^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$, which is odd. Thus, if m is not even, then m^{2} is not even. Therefore, if m^{2} is even, then m is even.

Work on these in groups with the support of the TAs.
You should be able to give a clear explanation of your solutions.

