Proofs and Proving

Determine whether each of the following are valid proofs of the statements given. Be specific. Where appropriate, formulate correct proofs.

- 1. **Statement:** Let m be an integer. If m^2 is even, then m is even. **Proposed "Proof":** Assume m is even. Then m = 2k for some integer k. Thus, $m^2 = (2k)^2$, or $m^2 = 2(2k^2)$, which is even. Therefore, if m^2 is even, then m is even.
- 2. **Statement:** Let m be an integer. If m is even, then m^2 is even. **Proposed "Proof":** Suppose m is not even. Then m is odd. So m = 2k + 1 for some integer k. Therefore, $m^2 = (2k + 1)^2 = (4k^2 + 4k + 1)$ which is odd. Thus, if m is odd, then m^2 is odd. Therefore, if m is even, then m^2 is even.
- 3. **Statement:** Let x and y be real numbers. If xy = 0, then x = 0 and y = 0. **Proposed "Proof":** There are two cases. Case 1: If x = 0, then $xy = 0 \cdot y = 0$. Case 2: If y = 0, then $xy = x \cdot 0 = 0$. In either case, xy = 0.
- 4. **Statement:** Let m be an integer. If m^2 is even, then m is even. **Proposed "Proof":** Assume m is not even. Then m is odd. Thus, m = 2k + 1 for some integer k. Then $m^2 = (2k + 1)^2 = 4k^2 + 4k + 1$, which is odd. Thus, if m is not even, then m^2 is not even. Therefore, if m^2 is even, then m is even.

Work on these in groups with the support of the TAs.

You should be able to give a clear explanation of your solutions.