THE PROOF WRITING HANDBOOK

The basics

• Let \(P \) and \(Q \) be statement variables.
• When needed, suppose that \(P = P(x) \) depends on a variable \(x \).
• The symbol “\(\forall \)” means “for all” or “for any”.
• The symbol “\(\exists \)” means “there exists” or “for some”.

<table>
<thead>
<tr>
<th>Type of statement</th>
<th>What we must do to prove that it is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) If (P), then (Q)</td>
<td>Suppose that (P) is true.</td>
</tr>
<tr>
<td>(2) (\forall P, Q)</td>
<td>Prove that (Q) is true.</td>
</tr>
<tr>
<td>(3) (\exists x) (P(x)) such that (Q)</td>
<td>Choose** (x) so that (P(x)) is true.</td>
</tr>
<tr>
<td></td>
<td>Prove that (Q) is true.</td>
</tr>
</tbody>
</table>

You do not need to explain how you find \(x \), nor do you need to try to construct all possible \(x \).

Rule #1

To prove that a statement is false, you must write out the negation of the statement and prove that.

Five common mistakes that you MUST avoid

• When proving any of the types of statements (1), (2), or (3):
 1. **You cannot:** suppose that \(Q \) is true.
 2. **You should not:** overuse symbols nor violate the rules of grammar.†
 † You must write in full sentences and use symbols correctly.

• When proving a statement of the form (2) “\(\forall P, Q \)”:
 3. **You cannot:** “choose” or exhibit an example in place of a proof.

• When proving a statement of the form (3) “\(\exists x \) \(P(x) \) such that \(Q \)”:
 4. **You should not:** attempt to construct all possible \(x \) so that \(P(x) \) and \(Q \) are true.

• When proving a statement by contradiction (see below):
 5. **You cannot:** claim a contradiction has been reached without explanation.††
 †† You must clearly identify the contradiction being made by making a statement of the form “\(P \) and NOT \(P \), which is a contradiction”.

Date: May 18, 2021.
Proof by Cases. To prove: “If P_1 or P_2 or P_3, then Q.” Use cases.

Proof.

Case 1: Suppose P_1. Prove Q.
Case 2: Suppose P_2. Prove Q.

Proof by Contradiction. To prove Q by contradiction.

Proof.

Suppose NOT Q.
Obtain a contradiction.
Conclude Q.

Department of Mathematics & Statistics, University of Calgary, Calgary, AB, Canada