In the beginning...

Let \(P \) and \(Q \) be statement variables. When needed, suppose that \(P = P(x) \) depends on a variable \(x \). The symbol “\(\forall \)” means “for all” or “for any”. The symbol “\(\exists \)” means “there exists”.

<table>
<thead>
<tr>
<th>Type of statement</th>
<th>What we must do to prove that it is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) If (P), then (Q)</td>
<td>Suppose that (P) is true.</td>
</tr>
<tr>
<td>(2) (\forall P, Q)</td>
<td>Prove that (Q) is true.</td>
</tr>
<tr>
<td>(3) (\exists x P(x)) such that (Q)</td>
<td>Choose** (x) so that (P(x)) is true. Prove that (Q) is true.</td>
</tr>
</tbody>
</table>

You do not need to explain how you find \(x \).

The first (and only) commandment

To prove that a statement is false, thou shalt write out the negation of the statement and prove that.

The five cardinal sins

- When proving any of the types of statements (1), (2), or (3):
 1. **Thou shalt not:** suppose that \(Q \) is true.
 2. **Thou shalt not:** overuse symbols and violate the rules of English grammar.†
 † You must write in full sentences and use symbols correctly.
- When proving a statement of the form (2) “\(\forall P, Q \)”:
 3. **Thou shalt not:** “choose” or exhibit an example in place of a proof.
- When proving a statement of the form (3) “\(\exists x P(x) \) such that \(Q \)”:
 4. **Thou shalt not:** attempt to construct all possible \(x \) so that \(P(x) \) and \(Q \) are true.
- When proving a statement by contradiction:
 5. **Thou shalt not:** claim a contradiction has been reached without explanation.††
 †† You must clearly identify the contradiction being made by making a statement of the form “\(P \) and NOT \(P \), which is a contradiction”.

Date: May 19, 2021.