## **A Calculus Vignette**

Veselin Jungić, Simon Fraser University



Issue 12, February 2023

How would you quickly convince your curious calculus student (or yourself) that a particular type of limit is an indeterminate form?

You probably routinely use functions f(x) = ax,  $a \in \mathbb{R} \setminus \{0\}$ , and g(x) = x, to demonstrate that the limit of the quotient of two functions that both tend to 0, when  $x \to 0$ , or to  $\infty$ , when  $x \to \infty$ , could be whatever.

But what about other indeterminate forms? Like  $0^0$ , for example?

A student challenges you: "You said that  $0^0$  is an indefinite form, but all examples that you showed us ended up with the limit equal 1. How come that  $0^0$  is not 1? I actually think that I can prove that it is."

You may wish to answer student's question by taking f(x) = x and g(x) = 0 and showing that  $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$ , but  $\lim_{x \to 0} f(x)^{g(x)} = 1$  and  $\lim_{x \to 0} g(x)^{f(x)} = 0$ .

Still, your student is not happy and says: "You are taking g(x) = 0, so this may be some of those weird special cases. Can you convince me that a limit of the type  $0^0$  is really an indeterminate form, i.e., that it could be . . . whatever?"

A simple way to do this is to, for  $a \in (0, 1)$ , take  $f(x) = e^{x^{-2} \ln a}$  and  $g(x) = x^2$ . Then,  $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$  and  $\lim_{x \to 0} f(x)^{g(x)} = a$ .

To even add a bit more spice and to possibly keep your student in suspense, you may take, for a > 1 and  $b \in \mathbb{R} \setminus \{0\}$ ,  $f(x) = a^{-\sin^{-2} x}$  and  $g(x) = x \sin(bx)$ . Then,  $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$  and

$$\lim_{x \to 0} f(x)^{g(x)} = \lim_{x \to 0} a^{-\frac{x \sin(bx)}{\sin^2(x)}} = a^{-b},$$

i.e., a limit of the type  $0^0$  could be . . . whatever.

But your student is not giving up: "This is convincing, but I'll prove to you that  $0^0 = 1$ . Do you accept the binomial formula:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k, a, b \in \mathbb{R}, n \in \mathbb{N}?$$

"Of course," you answer, a bit puzzled. Your student is smiling: "If I take a = 0, b = 1, and, for example, n = 2, the binomial formula gives me:  $1 = (0+1)^2 = 0^2 \cdot 1^0 + 2 \cdot 0^1 \cdot 1^1 + 0^0 \cdot 1^2 = 0^0$ ."

You are scratching your head, "What has just happened?"

## Reference

Huber, M. R., & Rickey, V. F. (2008). What is  $0^0$ ?, MAA Publications: Convergence. Retrieved from: https://www.maa.org/press/periodicals/convergence/what-is-00

Copyright © \*First-Year Math & Stats in Canada, All rights reserved.