A Calculus Vignette

Veselin Jungić, Simon Fraser University

Issue 12, February 2023

How would you quickly convince your curious calculus student (or yourself) that a particular type of limit is an indeterminate form?

You probably routinely use functions $f(x)=a x, a \in \mathbb{R} \backslash\{0\}$, and $g(x)=x$, to demonstrate that the limit of the quotient of two functions that both tend to 0 , when $x \rightarrow 0$, or to ∞, when $x \rightarrow \infty$, could be whatever.

But what about other indeterminate forms? Like 0^{0}, for example?
A student challenges you: "You said that 0^{0} is an indefinite form, but all examples that you showed us ended up with the limit equal 1 . How come that 0^{0} is not 1 ? I actually think that I can prove that it is."

You may wish to answer student's question by taking $f(x)=x$ and $g(x)=0$ and showing that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$, but $\lim _{x \rightarrow 0} f(x)^{g(x)}=1$ and $\lim _{x \rightarrow 0} g(x)^{f(x)}=0$.

Still, your student is not happy and says: "You are taking $g(x)=0$, so this may be some of those weird special cases. Can you convince me that a limit of the type 0^{0} is really an indeterminate form, i.e., that it could be . . . whatever?"

A simple way to do this is to, for $a \in(0,1)$, take $f(x)=e^{x^{-2} \ln a}$ and $g(x)=x^{2}$. Then, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} f(x)^{g(x)}=a$.

To even add a bit more spice and to possibly keep your student in suspense, you may take, for $a>1$ and $b \in \mathbb{R} \backslash\{0\}, f(x)=a^{-\sin ^{-2} x}$ and $g(x)=x \sin (b x)$. Then, $\lim _{x \rightarrow 0} f(x)=$ $\lim _{x \rightarrow 0} g(x)=0$ and

$$
\lim _{x \rightarrow 0} f(x)^{g(x)}=\lim _{x \rightarrow 0} a^{-\frac{x \sin (b x)}{\sin ^{2}(x)}}=a^{-b}
$$

i.e., a limit of the type 0^{0} could be \ldots whatever.

But your student is not giving up: "This is convincing, but I'll prove to you that $0^{0}=1$. Do you accept the binomial formula:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}, a, b \in \mathbb{R}, n \in \mathbb{N} ? "
$$

"Of course," you answer, a bit puzzled. Your student is smiling: "If I take $a=0, b=1$, and, for example, $n=2$, the binomial formula gives me: $1=(0+1)^{2}=0^{2} \cdot 1^{0}+2 \cdot 0^{1} \cdot 1^{1}+0^{0} \cdot 1^{2}=$ 0^{0}."

You are scratching your head, "What has just happened?"

Reference

Huber, M. R., \& Rickey, V. F. (2008). What is 0^{0} ?, MAA Publications: Convergence. Retrieved from: https://www.maa.org/press/periodicals/convergence/ what-is-00

Copyright © *First-Year Math \& Stats in Canada, All rights reserved.

