Coq Reference Sheet

Manipulating Goals

intros. If your goal is \forall n, P \rightarrow Q, introduce a variable n and a hypothesis P, and change your goal to Q. Usually you can start every proof with intros. **split.**

– Your goal is P Q and you want to first prove P, then prove Q.

– Your goal is $P \leftrightarrow Q$ and you want to first prove $P \rightarrow Q$, then $Q \rightarrow P$.

left. Your goal is P V Q, and you want to prove P.

right. Your goal is P V Q, and you want to prove Q.

exists x. Your goal is \exists n, P, and you want to prove that the choice n = x satisfies P.

assert P. Replace the current goal with P. After proving P, it appears as a new hypothesis, and you must then prove your original goal.

contradiction H. If H is of the form ¬P, your goal will change to P.

Manipulating Hypotheses

apply H. Given $H : P \rightarrow Q$, if your goal is Q, change your goal to P.

apply (H x y). You have H : \forall m n; P \rightarrow Q, and you want to use H with m = x and n = y.

apply H1 **in** H2. Given H1 : $P \rightarrow Q$ and H2 : P, change H2 to Q.

destruct H. (Always replaces H.)

- Given H : P Q, replace H with two new hypotheses P and Q.

- Given H : P V Q, split up your proof into two cases. In Case 1, you are given H : P (and you must prove your theorem), and in Case 2, you are given H : Q (and you must prove your theorem).

– Given H : \exists n, P, create a new variable x and replace H with a new hypothesis stating that P holds for x.

Creating New Hypotheses

pose proof (classic P**).** If you need to do case analysis on an arbitrary statement P, the command introduces a new hypothesis $H : P \lor \neg P$. Usually this command is followed by the application of destruct H.

Other Commands

unfold not. changes $\neg P$ to $P \rightarrow False$.

exact. Tell Coq that one of the hypotheses exactly matches the goal. This proves the goal. **contradiction.** Tell Coq that there are two logically contradictory hypotheses. This shows that the current case being considered in the proof can never arise.

Warning: A hypothesis which contradicts a goal is NOT A CONTRADICTION! Contradiction means that two hypotheses contradict each other.