A Calculus Vignette

Veselin Jungić, Simon Fraser University

Issue 13, July 2023

Student (quietly): I am somewhat confused with today's lecture about differentials. I am not sure if I understand what's going on there.

Instructor (speaking, writing, and drawing authoritatively): It's simple. . . You have a differentiable function $y=f(x)$, you fix a number x in the domain of f, and find the linearization of f at x : $L(t)=f(x)+$ $f^{\prime}(x)(t-x)$. Next you look at the change of $L: L(t)-L(x)=L(t)-f(x)=f^{\prime}(x)(t-x)$. You see this on the graph?

Student (impatiently): Yes, I got that part. This is what confuses me. You decided to write $d x=t-x$ and $d y=L(t)-L(x)$. Then, you wrote $d y=f^{\prime}(x) d x$ and called this the differential.

Instructor (confidently): Yes, that's what I said.
Student (softly): I really don't understand with how many independent variables we are dealing with in the expression $d y=f^{\prime}(x) d x$. I think that " x " has to be a variable, but " t " looks to me like a variable too. I guess that x and t do not depend on each other? It looks like that they play different roles in the definition of the differential. And the variable t is somehow hidden in $d x$. It didn't disappear, did it? I feel like $d x$ would change if I change the value of x, but it will also change if I change the value of t. Is this right? We have never mentioned a function of two variables in our Calculus class.

Instructor (thoughtfully): Yes, you will study functions of two or more variables in Calculus 3. Well, honestly, I don't remember thinking about differentials in this way. What you said sounds reasonable, but let me think about that a bit more.

Student (excitingly): Thank you, Professor! But there is one more thing that bugs me. Is this " y " in $d y$ the same " y " as in $y=f(x)$? I am asking this because " $d y$ " depends on x and t, while " y " depends on x only.

Bibliography

Apostol, T. M. (1957). Mathematical Analysis - A Modern Approach to Advanced Calculus. Addison-Wesley Publishing Company, Massachusetts.

Copyright © *First-Year Math \& Stats in Canada, All rights reserved.

