Student (quietly): I am somewhat confused with today’s lecture about differentials. I am not sure if I understand what’s going on there.

Instructor (speaking, writing, and drawing authoritatively): It’s simple... You have a differentiable function \(y = f(x) \), you fix a number \(x \) in the domain of \(f \), and find the linearization of \(f \) at \(x \): \(L(t) = f(x) + f'(x)(t - x) \). Next you look at the change of \(L \): \(L(t) - L(x) = L(t) - f(x) = f'(x)(t - x) \). You see this on the graph?

Student (impatiently): Yes, I got that part. This is what confuses me. You decided to write \(dx = t - x \) and \(dy = L(t) - L(x) \). Then, you wrote \(dy = f'(x)dx \) and called this the differential.

Instructor (confidently): Yes, that’s what I said.

Student (softly): I really don’t understand with how many independent variables we are dealing with in the expression \(dy = f'(x)dx \). I think that “\(x \)” has to be a variable, but “\(t \)” looks to me like a variable too. I guess that \(x \) and \(t \) do not depend on each other? It looks like that they play different roles in the definition of the differential. And the variable \(t \) is somehow hidden in \(dx \). It didn’t disappear, did it? I feel like \(dx \) would change if I change the value of \(x \), but it will also change if I change the value of \(t \). Is this right? We have never mentioned a function of two variables in our Calculus class.

Instructor (thoughtfully): Yes, you will study functions of two or more variables in Calculus 3. Well, honestly, I don’t remember thinking about differentials in this way. What you said sounds reasonable, but let me think about that a bit more.

Student (excitedly): Thank you, Professor! But there is one more thing that bugs me. Is this “\(y \)” in \(dy \) the same “\(y \)” as in \(y = f(x) \)? I am asking this because “\(dy \)” depends on \(x \) and \(t \), while “\(y \)” depends on \(x \) only.
Bibliography

Copyright © *First-Year Math & Stats in Canada, All rights reserved.*